Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Neutral atom arrays have become a promising platform for quantum computing, especially the field programmable qubit array (FPQA) endowed with the unique capability of atom movement. This feature allows dynamic alterations in qubit connectivity during runtime, which can reduce the cost of executing long-range gates and improve parallelism. However, this added flexibility introduces new challenges in circuit compilation. Inspired by the placement and routing strategies for FPGAs, we propose to map all data qubits to fixed atoms while utilizing movable atoms to route for 2-qubit gates between data qubits. Coined flying ancillas, these mobile atoms function as ancilla qubits, dynamically generated and recycled during execution. We present Q-Pilot, a scalable compiler for FPQA employing flying ancillas to maximize circuit parallelism. For two important quantum applications, quantum simulation and the Quantum Approximate Optimization Algorithm (QAOA), we devise domain-specific routing strategies. In comparison to alternative technologies such as superconducting devices or fixed atom arrays, Q-Pilot effectively harnesses the flexibility of FPQA, achieving reductions of 1.4x, 27.7x, and 6.3x in circuit depth for 100-qubit random, quantum simulation, and QAOA circuits, respectively.more » « less
- 
            Viberg, O.; Jivet, I.; Muñoz-Merino, P.; Perifanou, M.; Papathoma, T. (Ed.)Past research shows that teachers benefit immensely from reflecting on their classroom practices. At the same time, adaptive and artificially intelligent (AI) tutors are shown to be highly effective for students, especially when teachers are involved in supporting students’ learning. Yet, there is little research on how to support teachers to reflect on their practices around AI tutors. We posit that analytics built on multimodal data from the classroom (e.g., teacher position, student-AI interaction) would be beneficial in providing effective scaffolding and evidence for teachers’ collaborative reflection on human-AI hybrid teaching. To better understand the design opportunities and constraints of a future tool for teacher reflection, we conducted storyboarding sessions with seven in-service teachers. Our analysis revealed that certain modalities (e.g., position v. video) might be more beneficial and less constrained than others in identifying reflection-worthy moments and trends. We discuss teachers’ needs for reflection in classrooms with AI tutors and their boundaries in using multimodal analytics.more » « less
- 
            null (Ed.)Sc 3 Mn 3 Al 7 Si 5 is a rare example of a correlated metal in which the Mn moments form a kagome lattice. The absence of magnetic ordering to the lowest temperatures suggests that geometrical frustration of magnetic interactions may lead to strong magnetic fluctuations. We have performed inelastic neutron scattering measurements on Sc 3 Mn 3 Al 7 Si 5 , finding that phonon scattering dominates for energies from ∼20–50 meV. These results are in good agreement with ab initio calculations of the phonon dispersions and densities of states, and as well reproduce the measured specific heat. A weak magnetic signal was detected at energies less than ∼10 meV, present only at the lowest temperatures. The magnetic signal is broad and quasielastic, as expected for metallic paramagnets.more » « less
- 
            We present the first measurement of cosmic-ray fluxes of and isotopes in the rigidity range from 1.9 to 25 GV. The measurements are based on and nuclei collected by the Alpha Magnetic Spectrometer on the International Space Station from May 2011 to October 2023. We observe that over the entire rigidity range the and fluxes exhibit nearly identical time variations and, above , the time variations of , , He, Be, B, C, N, and O fluxes are identical. Above , we find an identical rigidity dependence of the and fluxes. This shows that they are both produced by collisions of heavier cosmic-ray nuclei with the interstellar medium and, in particular, excludes the existence of a sizable primary component in the flux. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available May 1, 2026
- 
            null (Ed.)Sc 3 Mn 3 Al 7 Si 5 is a rare example of a correlated metal in which the Mn moments form a kagome lattice. The absence of magnetic ordering to the lowest temperatures suggests that geometrical frustration of magnetic interactions may lead to strong magnetic fluctuations. We have performed inelastic neutron scattering measurements on Sc 3 Mn 3 Al 7 Si 5 , finding that phonon scattering dominates for energies from ∼20–50 meV. These results are in good agreement with ab initio calculations of the phonon dispersions and densities of states, and as well reproduce the measured specific heat. A weak magnetic signal was detected at energies less than ∼10 meV, present only at the lowest temperatures. The magnetic signal is broad and quasielastic, as expected for metallic paramagnetsmore » « less
- 
            null (Ed.)Self-healing triboelectric nanogenerators (SH-TENGs) with fast self-healing, high output performance, and wearing comfort have wide and promising applications in wearable electronic devices. This work presents a high-performance hydrogel-based SH-TENG, which consists of a high dielectric triboelectric layer (HDTL), a self-healing hydrogel electrode layer (SHEL), and a physical cross-linking layer (PCLL). Carbon nanotubes (CNTs), obtained by a chemical vapor deposition (CVD) method, were added into polydimethylsiloxane (PDMS) to produce the HDTL. Compared with pure PDMS, the short-circuit transferred charge (44 nC) and the open circuit voltage (132 V) are doubled for PDMS with 0.01 wt% CNTs. Glycerin, polydopamine particles (PDAP) and graphene were added to poly (vinyl alcohol) (PVA) to prepare the self-healing hydrogel electrode layer. SHEL can physically self-heal in ~1 min when exposed to air. The self-healing efficiency reaches up to 98%. The PCLL is made of poly(methylhydrosiloxane) (PMHS) and PDMS. It forms a good physical bond between the hydrophilic hydrogel and hydrophobic PDMS layers. The electric output performance of the SH-TENG can reach 94% of the undamaged one in 1 min. The SH-TENG (6 × 6 cm2) exhibits good stability and superior electrical performance, enabling it to power 37 LEDs simultaneously.more » « less
- 
            We report the properties of precision time structures of cosmic nuclei He, Li, Be, B, C, N, and O fluxes over an 11-year solar cycle from May 2011 to November 2022 in the rigidity range from 1.92 to 60.3 GV. The nuclei fluxes show similar but not identical time variations with amplitudes decreasing with increasing rigidity. In particular, below 3.64 GV the Li, Be, and B fluxes, and below 2.15 GV the C, N, and O fluxes, are significantly less affected by solar modulation than the He flux. We observe that these differences in solar modulation are linearly correlated with the differences in the spectral indices of the cosmic nuclei fluxes. This shows, in a model-independent way, that solar modulation of galactic cosmic nuclei depends on their spectral shape. In addition, solar modulation differences due to nuclei velocity dependence on the mass-to-charge ratio ( ) are not observed. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available February 1, 2026
- 
            Free, publicly-accessible full text available September 1, 2026
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available